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Nonstationary heat transport under conditions of freezing of filtering soils is 
studied using a mathematical model which takes into account an arbitrary distribu- 
tion of sources of cold. 

The study of the dynamics of growth of an ice-rock body around a system of freezing bore- 
~i holes is an important problem in modern hydraulic engineering r , 2] 

This work is concerned with the construction of an approximate method for studying the 
growth dynamics of an ice-rock body under the conditions of filtration flow. 

Analogous problems were studied in [3, 4]. A significant drawback of those studies is 
that in the solutionof the corresponding problems conductive heat transport along the stream- 
lines was neglected. In addition, in [4] the ice-rock body is represented in a form which 
approximates a real body with a quite large error. 

We shall study the plane problem, which is equivalent to the assumption that the depth 
of the borehole is infinite and the temperature field, the filtration velocity field, and 
the pressure field are uniform along the borehole. 

We introduce the coordinate system (x, y) in the plane perpendicular to the axes of the 
borehole. We use the following notation: (Xk, Yk) denotes the coordinates of the centers 
of the boreholes; Rb, radius of the borehole; V~, t~, velocity and temperature of the filtra- 
tion flow at infinity; tc~ temperature of the cooling agent; tp, temperature of the phase 
transition; and ~0, time at which the ice-rock barriers first join. We shall confine our 
attention to the study of the process in the time interval from 0 to ~0. In view of the fact 
that the filtration motion is stabilized much more rapidly than the temperature field, the 
basic system of equations can be written in the form 

div V = O, V = - - . •  g rad  P, (x, Y) 6 R2/U Dh, 
k 

Ott 
- -  a t div (grad i t )  - -  V g r a d  t v (x, y) 6 R2/U Dh, 

O'~ k 

Oth Oft [ dn ( 1 )  
Oih = a f  div (grad tk), (x, y) E Dh, �9 2~f ~ OD~.-- Lt ~ lOOl~= L ~ , 
Ox . dx 

tu ]r~. ---- t b, th [OD k =tt[oD k = tp, V = V| t t  = t| 

x~ @ y~-'~ oo, tt = t| ODh = Fh, " c = O ,  

where D k is the region occupied by the frozen soil around the k-th borehole; ~D k is the bound- 
ary of the region Dk; and D k = D k U 8D k, 

Choosing for the characteristic scales the quantities 

t = a f K p l V ~ ,  t b - t p ,  t=- - tp , ,V=,  

p == rV|215 r=  at/K.bV=, K b = cw~ w 
ct-9 t 

a n d  introducing the dimensionless variables ~' = ~af/r 2, V' = V/V~, 
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x' x y ,  p/p, = - - ,  v '  = - -  (x, V) 6 R ' / U  Dh, P '  = 
r r k 

Ok = tn-- tp 
t b- tp 

In what follows, we omit the prime on the dimensionless variables. 
in the form 

x ' =  x y ' =  Y (x, y)EDn, Ka = at  
7 '  -T' 

tt -- t____~p, 
~ ,  0---- t|  Kp = L/ctPt(t|  Ko = L/cfpf (tb--tp). 

(2) 

The system (i) is written 

divV = 0, (3)  

V = - -  grad P, (4) 

Ka 0O ~-VgradO,= div (grad O), (5)  
2 OT Kp 

0Ok. = div (grad On), (6) 
0x 

1 0On I O0 I dn 
Ko On o9 k On oD k dz 

On Ir~ = 1, 8 lop n = On Ioo~ = O, ( 7 )  

V = I ,  O = l  x ~ + y  ~---~~176 

O =  l OD~ = Fn, ~=0. 

The parameter Kp is much greater than unity for moist rock. Therefore, the first term on 
the left side of Eq. (5) can be dropped. In addition, based on the experimental data of [i] 
it may be assumed that at each moment in time the form of the ice-rock body around a separate 
borehole is a circle of radius Rk, shifted relative to the axis of the borehole by an amount 
e k. The slope angle between the velocity vector V~ and the straight line passing through 
the center of the circles is denoted by ~k" 

Introducing in a standard manner the complex potential of the flow and applying to Eq. 
(5) the Boussinesq transformation, we obtain 

0---~--" - 0~ - - -7 -  ~ (~' *) 6 m/U in, 0 = 0, (~, *) 6 tn, 
(8 )  

8=1,  ~ + ~ ,  Lh={~=~h, Tk~<~<~k}. 

The planes W, with theexception of the segments Lk, correspond to the physical plane 
Z from which the circles D k are cut out. Thus to solve Eq. (5) it is necessary to know the 
streaming potential of the given array of circular profiles. We shall call this problem 
"problem i." The solution of the problem (5) is also of interest in itself, so that we shall 
call it "problem 2." Possible approaches to the solution of this problem are analyzed in [3, 
5]. 

We shall consider the solution of theproblem (6) and (7). Since it is nonlinear, it 
is difficult to solve it in a closed form even in the one-dimensional case, so that we shall 
employ the integral method [3, 6-8]. 

We introduce the system of coordinates (~, q), fixed to the k-th wells as shown in Fig. 
i. We write fij = ~iqj. Multiplying (6) by fij and integrating over the region D k we ob- 
tain 

d f , , (ek--Ko)dn = ~ehAf,jea + ~ of,j f'J-o-l-n ds+ f .  (9) 
dT Dn Yk On aD n 

where n is the outer normal. Choosing the temperature profile in the form [9] 

1 
On = 2C 1 {m (~' + n s + 2 (h + b) C~ + (h + b) 2 - -  In (~2 + n' + 2 (h - -  b) C~ + (h --b)') + 2C,} - -  C~, 
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Fig. 

'% 

t~ 
i. Ice-rock body formed 
around a borehole. 

Ca = ,tr --,,tr In R~ (h + b) 
to Re (t4 + b)' 

C~:=--ln H+b,,, C~-- t ~  
Rh tr - -  t o 

C~ = ~1 cos ~,h + ~ sin ~k, h 
2ek 

2ek 

and using the three integral relations from the system (9) with i = 0 j = 0, i = 0 j = i, and 
i = I j = 0, we obtain a system of ordinary differential equations for determining the un- 
known functions Rk, ek, ak: 

dz D~ r h On 

d S ~ ( @ ~ - = K o ) d a =  i "'On - - ~ n  / d s + K ~  
dv D h r~ 
d 

~ (o~ - I<o) d e  =., - ~ d ~  ~ -  Ko Q~, (lo) 
dT Dr. r~ an ] ' 

~ O@ o~, . ds, Q~ -- ~ ~ ~ d~, I I  

oz~ k On o 
/ 4  

)i oo Q~ = ~1 ds.  
a On 

Thus, the problem of studying the growth dynamics of an ice--rock body around a system of 
columns subject to freezing up has actually been reduced to the construction of the complex 
potential of a flow and finding the temperature field in the W plane. Problem 1 has been 
studied by many authors, so that we shall not consider it. An extensive bibliography is pre- 
sented in [i0]. 

To solve the problem 2 we shall examine the Fourier transformation of Eq. (8) with re- 
spect to the variable ~. We make the substitution T = 0 - i. Omitting the calculations, 
we write out the system of integral equations for determining the unknown heat fluxes: 

] =  1, N; ~6 l? j ,  ~],  

where 

#0 I a~ I . (i!) V~ a~ r a--Tr162 
and K0(z) is the MacDonald function. 

To solve the system of integral equations (ii) it is necessary to know the behavior of 
the functions ~k at the points Yk, Vk, corresponding to the critical points for the fluid 
flow. 
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Fig. 2. Dependence of the average radius 
of the ice-Tock barrier on time for one 
borehole and for a gallery of boreholes, 
arranged perpendicularly to the incident 
flow. The solid line corresponds to a 
single column: i) d = 10R c. 

We study a neighborhood of the critical point in the plane of the potential and in the 
physical plane. Following a circuit around the point Z k in the physical plane the vector 
Z - Z k turns by an angle ~, while the vector W - W k turns by 2~. It can be shown that the 
conformal nature of the mapping at the point W k breaks down and dW/dZ = 0(~ - Wk). Writing 
the heat flux in the form 

 ll§ 
and taking into account the fact that at the critical points it ~ is finite, we obtain 

~ h = O  V W - - I ~ ' k  " 

Thus the calculation of the parameters of the ice-rock barriers must be performed using 
the following scheme: 

i) determine W; 

2) solve the system of integral equations, and find 

0 0 / 0 r  Ir o ; 

3) from the solution of the system of ordinary differential equations find the parameters 
of the ice-rock bodies. 

To illustrate the scheme presented above we shall study the problem of freezing of the 
soil for one column. As is well known [2], this solution is also used to calculate the outer 
contour of the ring-shaped barrier used for the passage of well-shafts. 

The complex flow potential in this case is easy to write down; it is the Zhukovskii po- 
tential. The integral equation obtained from the system (ii) can be solved by the Wiener-Hopf 
method, analogous to the manner in which this is done in [ii]. Because of the limited space 
available in this paper we cannot present the detailed calculations, so we shall merely write 
out the result: 

g n (a + ~) 2~ ] / ~  ( a - -  ~) ~ o 

This result holds for all a satisfying the condition ~ ~ -Ei(-a), where ~ is the half-width 
of the cut in the plane of the potential. We note that the first term in (13) is the solu- 
tion of the problem (8) under the assumption that the thermal conductivity along the stream- 
lines can be neglected. It is easy to see that this assumption leads to the fact that the 
heat flow at the point of convergence of the fluid flow approaches zero, which is unrealistic. 
It can be shown that further refinement of (13) only gives small corrections, and is insignifi- 
cant for the estimate presented above. 

Figures 2 and 3 show the results of calculations for the following values of the param- 
eters: R e = 1.875.10 -= m, V= = 3.10 -s m/sec, t c = 253~ t~ = 293~ X t = 2.21 W/m.~ X m = 
2.43W/m.~ at = 0.8.10 -s ma/sec, a m = 1.3-I0 -s m=/sec, L = 16.3.10 v 3/m 3. 

It is evident from the graph of the behavior of the functions R/Rb, e/R b that in the 
limit ~ § ~ they approach their limiting values 1~/Rc, e~/R c. In addition, calculations were 
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Eccentricity as a function of time 
for one borehole. 

also carried out for the case when the freezing is done by a gallery of boreholes. In this 
case, the integral equation corresponding to the system (Ii) was solved numerically. The 
results of the calculations show that if the distance between the columns is significant (>20 
Rc), then the interaction is not important over real time intervals. 

For operational evaluation of the parameters of freezing systems, providing for joining 
of ice-rock barriers, to a first approximation the result obtained for one borehole can be 
used. Setting in Eqs. (8) in the limit �9 + ~ the time derivatives equal to zero, we find 

Q2-]- Q1 (Rexp( (]3Q12 ~] _ 1)/e:= 0, 

Q1 = OO d% Q2 := "-~ d(p -}- eQ1, 
- - a  - - a  (14) 

e = (R exp (2/(DQ1) --  I)1/.:, (R exp (-- 2/(DQO - .  1)I / 2, 

% fn t  e a t c~Pt 

R -~ R ~ / R  b, e == e| t, 
where a = 2R. 

For the joining criterion we can use 

d <~ 2R~,  (15) 
i.e., the distance between the centers of the freezing boreholes must be less than or equal 
to the limiting diameter of the ice-rock barrier around a separate column. Thus based on 
the given value of d, according to (15), it is possible to select the required value of R~. 
Then, solving the transcendental equation, it is possible to calculate the value of the param- 
eter 8 based on which it is possible to judge, for example, the temperature required in the 
borehole. 

It is interesting to note that if in the formula (13) only the first term is retained, 
i.e., heat conduction along streamlines is neglected, then the formula for the eccentricity 

5 . /  16 

is practically identical to the analogous formula presented in [2]. 

NOTATION 

a , coefficient of thermal diffusivity; X, coefficient of thermal conductivity; • , filtra- 
tion coefficient; L, latent heat of fusion; c, specific heat capacity; p, density; r, char- 
acteristic size in the thawed zone; Z, characteristic size in the frozen zone; V, velocity; 
P, pressure; p, characteristic pressure; t, temperature; ~, time; x and y, Cartesian coordin- 
ates; ~, D, local coordinates in the frozen zone, defined in Fig. i; Fk, boundary of the k-th 
borehole; 8Dk, boundary of the ice-rock body; Dk, region occupied by the frozen soil around 
the k-th borehole; n, outer normal; Z = x + iy, a complex variable in the physical plane; 
W = ~ + iV, complex potential of the flow; 4, Laplacian operator; Yk, ~k, ends of the cut 
in the W plane; ~k, value of the stream function at the k-th circle; x 0, time at which the 
ice-rock barriers first join; R, radius of the circle; e, eccentricity; a, slope angle of 
the velocity vector at infinity relative to the straight line passing through the center of 
the circles. The dimensionless criteria, parameters, and functions are as follows: Ok, 0, 
K a, Kp, Ko, K c are defined in (2); QI, Q2, Qs are defined in (i0) and (ii); U, unknown density 
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in the integral equation; K0(Z), MacDonald's function; d, distance between the centers of 
the boreholes; ~, parameter from (14); Pe, Peclet's number from (14); Z k and W k, critical 
points of the flow in the corresponding planes. Indices: t, thawed zone; f, frozen zone; 
b, surface of the borehole; p, phase-transition surface; w, water; ~, value at infinity; the 
prime in (2) denotes a dimensionless variable. 
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